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1. INTRODUCTION

This is a semi-annual Status Report for the work accomplished under

NASA Grant NGR-05-071-005 for the Trajectory Analysis and Geodynamics Division,

Goddard Space Flight Center, National Aeronautics and Space Administration.

This report contains the mathematical analysis and computation of the

K=3, order 4; K=4, order 6; and K=5, order 7 cyclic methods and the K=5, order 6

Cowell method and some results of "optimizing" the 3 backpoint cyclic multi-

step methods for solving ordinary differential equations [2,5,10] . Cyclic

methods have the advantage over traditional methods of having higher order for

a given number of backpoints while at the same time having more free parameters.

After considering several error sources the primary source for the cyclic

methods has been isolated.

The free parameters for three backpoint methods were used to minimize the

effects of some of these error sources. They now yield more accuracy with the

same computing time as Cowell's method on selected problems.

This work is being extended to the five backpoint methods. The analysis

and optimization are more difficult here since the matrices are larger and the

dimension of the "optimizing space" is larger. Indications are that the primary

error source can be reduced. This will still leave several parameters free to

minimize other sources.
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2. CAMPUTATION RESULTS

Class II Methods on Orbits (Local Correction Error):

Integrating the two body equations (6.1) for the motion of a satellite

similar to GEOSB with exact starting values in [5] we found that with the cyclic

K=5, order 7 corrector and the PECE algorithm moving from an unstable order 7

predictor to Stormer order 6 predictor increased the error slightly at small h

(due to lower order) but greatly decreased the error at larger h (due to in-

creased stability). This implies that the predictor has a great effect on the

cyclic method and should be included in future derivations.

With the latter predictor the PE(CE)2 algorithm improved the accuracy

slightly at small h and greatly at larger h. However, iterating to convergence

with the corrector at each step did not decrease the errors any more than this.

As can be seen from Figure 1 the cyclic K=5 corrector still needs improve-

ment as it is being compared to the cyclic K=4 and Cowell K=5 with only the

PECE algorithm. At this h=l sec. the "random" local roundoff error probably

dominates the local truncation error. The cyclic K=4 error typically oscillates

in the first few steps while the K=5 jumps greatly. Details of Cowell on this

equation were not available but other results indicate it increases slowly. All

three soon level off to about the same rate of error growth.

Class I Methods on y' = .5y:

Because of the strong dependence on predictor and algorithm and because

the error curves were similar to those for orbits,we decided to being our study

on linear equations. Figure 2 compares the cyclic (order 9) and Adams (order 9)

class I, K=5 methods using program CCMPAR in double precision with exact starting

values. Since 9x4=36 and since the CDC machine carries --28 places the "random"

local roundoff error dominates the local truncation error. The h=10-6 curves

are similar to these h=10 4 curves.

The Adams coefficients were "perturbed" by 5x10
-2 6 (see Section 3.1) which

is the estimated error in the cyclic coefficients. This is probably the reason

the Adams error greatly increases during the first cycle.

Class II Methods on y" = y:

In order to dominate the truncation and roundoff (,10-28) errors the

starting er or =(1,-2,4,-8,16) x 10 - 2 0 was propogated using CCMPAR at h=0 in

double precision for the cyclic, K=4, order 6; cyclic, K=5, order 7; and Cowell,

K=5, order 6 methods. See Figure 3.
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Figure 4 shows the results of integrating y" = y with COMPAR in double

precision at h=10- 6 with exact starting values. Since 6x6=36 the roundoff

error dominates.

In Figure 5 at h=10 - 2 with exact starting values the truncation error

dominates. The cyclic method is better in the first cycle since its order is

higher but immediately gets worse in the second.

The cyclic, K=5, order 7-4/5 curves were almost the same as the order 7

ones so they were not graphed. Single and double precision runs were made

with h ranging from 0 to 10- 1. All methods blew up at 10-1 (i.e., error after

50 cycles -i1) but remained good at h=10-2

3. COMPUTATIONAL ANALYSIS

3.1 Stability With Respect to Perturbations of the Coefficients:

Because of the propogation of roundoff errors in solving the nonlinear

stability equations, the K=5 cyclic coefficients were estimated to be in error

by 10-25 . The K=6 even more so because of the inaccurate order equation

solutions. These errors do not effect integrations in single precision

( r-14 places) so the conclusions will still hold since they will be based

in part on single precision integrations. However, the sensitivity of the

integration errors in double precision to a perturbation of the coefficients

is a measure of the stability of a method.

Table 1 shows the effects of adding to each cyclic, K=5, order 7

coefficient 5x10- 23 and to the Cowell, K=5, order 6 ones the same amount

with exact starting values at h=10 -4 where both roundoff and truncation

contribute. The Cowell errors increase by a factor of 107 and the cyclic

by 105 (less because they were in error to start with). Since the machine

computes with 28 to 29 places our perturbation is -'105 times the computation

accuracy, the computations will now be done 105 times less accurate, and

this is about the error increase shown. If this result can be generalized then

the methods are nearly equally sensitive but not overly sensitive to these

perturbations. This implies derivations of coefficients must be done more

accurately than is their practical use in integrating equations.
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Table 1. Integration Errors

Error at Cycle # #1 #2 #50

Cyclic unperturbed 2 E-24 6 E-23 2 E-20

Cyclic perturbed 4 E-19 2 E-17 2 E-14

Cowell unperturbed 2 E-27 7 E-27 4 E-24

Cowell perturbed 2 E-20 6 E-20 3 E-17

3.2 Local Truncation Error (Order):

The order equations were satisfied in all cases and the first few.

non-zero coefficients in the local truncation error expansions are comparable

to Cowell's.

Table 2. Truncation Error Coefficients

Cyclic, K-4, order 6

Method # = 1,3 2,4

C8  = .0021 .0026

C9  = .0042 .0052

C 10  = .0046 .0056

C11 = .0035 .0042

Cyclic, K=5, order 7

Method # = 1 2 3 4 5

C = -.0005 .0026 -.0003 -.0007 -.0009

C10 = -.0011 .0064 -.0007 -.0017 -.0022

011 = -.0012 .0085 -.0007 -.0019 -.0026

C12 = -.0009 .0079 -.0003 -.0014 -.0021

3.3 Eigenvalues, Vectors, Condition Numbers (Stability):

The "stability matrix" determines how the local errors are propogated for

the cyclic methods and for a traditional method used cyclicly. The eigenvalues

were of primary concern and were computed-for h=O and for h=10-6 , 10 , 10-2

10-1 for the equation y" = y. The h=O computations were not accurate since
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the Cowell and cyclic matrices were ill-conditioned, the Jordon block associated

with A=1 was 2x2, and the computed eigenvalues were overly sensitive to round-

off errors. The principal condition numbers as derived from the eigenvectors

(Section 4) were also of importance and were computed 
at h=10-4 (Section 5.1

contains more thorough computations in this regard). Finally the row norms of

the stability matrices varied slowly with h and are: 9.0 for the cyclic K=4

method, 11.0 for the Cowell K=5 method, and 1723.8 for the cyclic K=5 method.

The cyclic and Cowell K=5 principal eigenvalues behave the same. The

Cowell extraneous values remain well within the unit circle at h=10-1 when it

blows up in computations implying it is "over stable." The cyclic extraneous

values leave the unit circle at the same h at which it blows up implying

that the 'blow up" point may be moved to larger h by improving the behavior of

the eigenvalues.

Table 3. Eigenvalues, Xk

In the vector (r,i) r is the real part, i the imaginary.

h Root #1 #2 #3 #4 #5

Cyclic K=4

10-6 1.000004 0.999996 (-1.0,1.4E-13) (-1.0,-1.4E-13)

10- 4  1.00040 0.99960 (-1.0,1.4E-9) (-1.0,-1.4E-9)

10-2 1.04 0.96 (-1.0,1.4E-5) (-1.0,-1.4E-5)

10- 1 1.5 0.67 (-1.0,1.4E-3) (-1.0,-1.4E-3)

Cowell K=5

0 1. 1. -5.E-23 -7.E-35 -3.E-35

10-6 1.000005 0.999995 i.E-28 -8.E-28 -I.E-28

10-4  1.00050 0.99950 5.E-18 (-2.,-4.)E-18 (-2.,4.)E-18

10-2 1.05 0.95 2.E-11 (-1.,-2.)E-11 (-1.,2.)E-11

10-1 1.65 0.61 4.E-8 (-3.,-4.)E-8 (-3.,4.)E-8

Cyclic K=5

0 1. 1. -1.E-4 (0.7,1.)E-4 (0.7,-1.)E-4

10-6 1.000005 0.999995 2.E-6 (-1.,2.)E-6 (-l.,-2.)E-6

10- 4  1.00050 0.99950 0.00010 -1.2E-5 -9.1E-5

10-2 1.05 0.95 0.02 -1.E-5 -0.005

10-1 1.65 0.61 1.56 -1.E-5 -0.006
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Table 4. Principal Condition Numbers, sk

Root # #1 #2 #3 #4

Cyclic K=4 -1.414E-4 +1.414E-4 (-0.4,1.2) (-0.4,-1.2)

Cowell K=5 6.326E-5 -6.324E-5

Cyclic K=5 -1.033E-8 +1.032E-8

4. MATHEMATICAL ANALYSIS AND OPTIMIZATION

4.1 Summary of Computational Results:

The Class I and II, cyclic, K=5 methods in computations dominated by

starting error, "random" roundoff error, or truncation error always show

an error jump in the first or second cycles. The error growth levels off

to the same rate as Cowell's as you integrate along (increase cycle number)

on a given equation so this is not a stability problem (Figures 1,2,3,4 and

Table 3). The difference between the cyclic and Cowell errors remains a

factor of about 5x10 3 for h=0,10 - 6 and 10- 4 (compare Figures 3,4 and Table 1).

At 10- 2 (Figure 5) the truncation error dominates the first cycle so the

cyclic error is smaller but during the second cycle it jumps as before but

by a smaller factor of about 5x102.

In fact it is quite common that the cyclic error actually decreases

(figures 2 and 3) while this has never been observed for any traditional

method. This is probably due to the different correctors cancelling the

errors. It may be possible to choose the correctors so that the errors

exactly cancel within each cycle thus obtaining an '-'errorless" method.

This does not seem to be possible with any single method. The K=4 cyclic

method illustrates something very close to this "ideal" cyclic method. The

error growth in the first few cycles is smaller and thereafter levels off

at the same rate as Cowell but at a smaller error level.

The cyclic K=4 method has the largest condition numbers', the smallest

norm, the slowest growth of extraneous values with h, and the smallest error

in all com4utations. The cyclic K=5 is just the opposite in all respects.

The Cowell K=5 is in-between in all respects its condition numbers being

about 5x103 larger than the cyclic at h=10- 4 (Table 4).
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4. 2 Convergence Proof, Error Bound:

Some analysis will be provided to explain these results and to

lead to methods of improving the accuracy. The equation y" = 01 y

will be studied in detail and it is expected that improvements will be

obtained also on orbit problems.

, For y" = f (x, y) the cyclic methods take the form

(4. 2. 1) A Ys+l + A Y - h 2 (B Y" + B Y  ) = 0 where
1 s+l 0 s 1 s+l 0 s

s = 1, 2, ... , S is the cycle number, Al, B 1 are lower triangular

and AO , B 0 upper triangular K x K matrices consisting of the a.
0 1

and b. of the K correctors [2] , Y consists of the approximate
1 s

th "
solution at the K grid points of the s - cycle, Y are the

s

corresponding approximate second derivatives from f (x , yn) , and

Y arethe starting values.

If each individual method is applied to the exact solution,

y (x) , restricted to the grid points, we obtain

(4. 2. 2) K [a Y(x ) - b y (x ) = t (x )k=O k n+k k n+k m n

where m = 1, 2, ... , K = the number of the method, the local

truncation error t (x) = C y (x ) C y' (x ) h + +
m n 0 n 1 n

m y() (x ) h p + ... [9, p. 296] . The order of the local truncation
p n

error is the power of h in the first non-zero term. The "order"

of method #m is the order of t -2
m

Let Ts+ 1 = t(XsK) ' tZ(XsK+1) ... , tK (XsK+K-1) ] consist of

the truncation errors of the K methods in the s + 1st cycle. Since

the computer has only finite word length and since we iterate only a

finite number of times in solving the implicit corrector equation
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at each step, a roundoff error will be committed. The right side of

(4. 2. 2) should be t (x ) + r where r must be considered
mn mn m

random variables in practice. Let Rs+1 = [ rI, r2 , * ' , rK ]

Writing (4. 2. 2) in matrix form and subtracting (4. 2. 1) we obtain

(4. 2. 3) A E + A E -h (B E" + B E" ) = T + Rs+l
1 s+l 0 s 1 s+1 0 s s+l s+1

where E = [ y(x ) - y ( + ) - and E"
s- sK sK sK+K-1 sK-K-1 s

consists of the exact minus approximate second derivatives.

For y" = ay (4. 2. 3) becomes

(4. 2. 4) LE+ 1 + UE = + R
s+1 s s+1 s+l

where L= A 1 - o h B 1 and U A 0 - ch 2 B 0 or

-1
(4. 2. 5) E = A E + B where B = L (T + R ) is the

s+l s s+l s+l s+l s+l

total local error magnified by L -1 and A = -L- U is the "stability

matrix". In terms of the starting errors, E 0 ;

S+i S AS
(4. 2. 6) E =A E + A B

S+1  0 s=O S-s+ 1 . In terms of the

Jordan cononical form, J, and the similarity transform , P,

S+1 -1 S s -l
(4. 2. 7) ES+1  P P E 0 + EP JP B s+

(4. 2. 8) Thm: Convergence for y" = e y:

If (i) stability: 'k are distinct for h > 0 and max = 1+ E

where E : ch ,

(ii) consistency: the local truncation and roundoff errors 11 B fl < O (h2 )

then (iii) the cyclic method converges and the order of the propogated

error is the min of the orders of the starting error, local roundoff

error minus 1 or local truncation error minus 1, and
3

(iv) II Es+11 K 2 i I max IIE I + II B i m (x-x )/Kh I e(x0 )/K
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where the terms are explained below.

Proof: Letting X k be the normalized eigenvector of A associated with

X, Zk that of A , s k = XkT Zk are the "condition numbers" , and

Pk =  /sk then the columns of P are Xk, IIP II < K, the rows

o P1 z k  o IISp

of P1 are pk Zk [12] , the rows of Js p- ar e k s

rX p s K-max pk (1 + )s . Using inequalities for

the row norm in (4. 2. 7)

S
EII S+1  I lip I II p-1 I E 11 (+ E) S+l+ I B I Imax E (1 + E)s]

s=O

K3/2 'Pk [max E (l+ch)S+l+ I B s Imax(S+l) (1+ch)s ]

3/ZIpk max (l+ch)(x-xo)/Kh EOlI+ (S+l)II Bs lImax

K3/2 IPk Imax eC(x-x )/K h II 0 1+ I Bs I I max(X-o)/K h]

x0 max

S SE
In the last steps we used (1+ C) s e and the fact that if x is in the

Sh cycle then K(S-1) h t x - x 0 < K Sh. Since I B s 1I O (h 2 ) the

second term is O (h) and if the starting errors are at least O (h) then

we have convergence. End of Proof.

The stability condition is suggested by Table 3 for a> 0 but

has not been established yet for a < 0 . It also suggests c = K. This

convergence proof can be extended to a more general class of f(x, y) by

using stability at h = 0 (not h > 0) and incorporating h 1 0 by using the

linearization of f (x, y) given by a Lipschitz condition. The theorem

would resemble that hypothesized in [2] with constants resembling

those of (4. 2. 8 iv) . Because we are considering linear
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equations this bound is better than that in [9] for arbitrary f and

traditional methods in several respects. For example, the order of

convergence is one higher. Also, for a > 0 y - ex so the

relative error grows only linearly with x (or with S) as is observed in

the graphs.

Both bounds also show if the same local truncation error can be

obtained with smaller K then the propogated error will be smaller. This is one

advantage of circumventing the Dahlquist [3] stability criteria in

addition to that of easier restarting. An advantage of treating the

cyclic methods in this matrix fashion instead of as an "auxiliary method"

[4] is that the factor I pk max is explicit. This is also in agreement

with the observations (inc. elliptical orbits) and with Table 4 "explains"

why methods differ so greatly in the first cycle but all'level off to

about the same error growth when the starting and roundoff errors

dominate. When the truncation dominates the method with the smaller

truncation error will be best in the first cycle since El = AEO + L (R1+ T1

L -R1 but in the second E Z  A L - I R
1 so the pk factor will enter.

This explains Fig. 5.

Wilkinson [12 ] presents the theory which shows that the

eigenvalues of a matrix with larger pk will grow faster with respect

to perturbations of the matrix. This explains Table 3 since in our case

the perturbation is h times the "b" coefficient matrix. Increased

stability will be obtained with smallerk p

The matrix approach and particular the error bound with

Pk factor explain very well all the graphs and tables containing the

observed results.

4. 3 Error in the First Cycle:

To understand more fully the observed behavior we must study

the first cycle in more detail than an error bound will allow. At

h > 0 the Xk are independent so E 0 and B 1 can be expanded as
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K K
E 0 = k= 1 E ek Xk and B k=l E b k Xk . Multiplying

T T
by Zk and using the definition of pk gives ek =k EO Zk

T K T T
bk pk B1 Z and E1 k E=l pk k E 0 Z + Bl Zk ] Xk

A similar expression could be obtained for E S from (4. 2. 6)

in which k S would appear implying that only the principal condition

numbers matter . It may be possible to pick E 0 such that the

expression in brackets is 0 . In the general case there are two

difficulties with this approach: (i) if truncation error : roundoff

error the second term is random and there is no hope of estimating

it, (ii) if truncation > > roundoff error the second term will be

extremely difficult to estimate requiring knowledge of the higher

derivatives of the solution. If this is the case it may be possible to

go to a more accurate method at the same h (higher order, smaller

C. 0 , or a completely different method) . The "cancellation"

effect (4. 1) in the cyclic methods could be taken advantage of in either

(i) or (ii)

K S T
Supposing the local errors are << EO;E S = k = 1 Pkk EZ Xk

This also represents the propogated effect of the local error at a single

step. For simplicity we will study E 0 = (0, 0, 0, 0, 1) for the Cowell
-4

and cyclic K = 5 methods at h = 10 using Tables 1, 3, and 4. The

products of the extraneous pk k were < . 01 of the principle products

even in the first cycle so they will be ignored. The first componant of
-5 -1

E 1 for Cowell = (6. 326 x 10 ) (1. 00050) (.70714) (.4471)

+ (-6. 324 x 105) - (0. 99950) (. 70707) (. 4473)

= (1+ 5h) (.4471) (.70707 + .7h)/(. 6324h) (1+ h)
.63

(1 - 5h) (. 4471 + 2h) (. 70707)/(. 6324h)

S(.4471) [. 70707 + (5x.7 +.7) h+ 3.5h2] [i - -- 3 h /.6324h

- (.70707)[.4471 + (2 - 5 x .44) h - 10h 2 ]/.6324h
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[ (. 4)(. 7)(- h)+. 4 (5x . 7 + .7) h (1- h) - .7(2-5x. 44)h/. 63h

F 7. We see that although s. NO(h) the fact that
1

X1 I- I ~ , -I x2 1 xI I Z, I- IZ2 I ~ O(h) , that

I 1 -Is2 0 O(h Z ) , and that there was an overall difference of sign

all lead to the cancellation of the zeroth order term in the numerator

thus making the error reasonable; a factor of 7 is in agreement with

Table 1.

It may be possible to apply perturbation theory [121 to verify

the above conditions (perhaps even the sign difference) on arbitrary

f(x, y) , provided the pk are not too large, since X = X2 and

1  X 2 at h= 0. The X and Z pairs must have nearly

corresponding componants.

For the cyclic method I hl - 21 X 11 - 1X 2 1

I Z1 - !Z Z 1 O (h) , I s, - sZ / O 01(h2) , and there is a net

difference in sign so also here

(4.3.1) 11E 11 ' c h J EO I/ I s1I  where c = constant + 0 (h)

includes a term I s1 + s2 / I Sl h so E1 includes a term

~ ( IEO Is1 + S2 I/ I s1 12 . For the cyclic however

I El1  r~ c 10-4/ 10- 8 1 E 0 1 iE 0 l x l104 which is in surprising

agreement with Table 1 in view of the simplifying assumptions made.

4.4 Optimization Criteria and Methods:

The problem facing us in not one of using some parameters to

satisfy a set of linear or nonlinear equations as almost all procedures

for deriving numerical methods are. We do not know what values can be
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attained by criteria such as II A II nor do we know how many

parameters it would take to solve such an equation. The former

problem is surmountable by just assuming smaller and smaller

values from the present one. However, the wrong choice of number

or type of parameters would make an equation solution impossible.

Although nonlinear optimization procedures are computationally

more complex and lengthy than solving nonlinear equations they do

solve the above problems. There are many ways to state our problem:

(i) minimize I A i subject to order and extraneous eigenvalue

conditions, (ii) minimize extraneous eigenvalues subject to order and

IA Il conditions , (iii) minimize the I I factors subject to order

and eigenvalue conditions or vica versa. The condition of A or the

norm of L or other ways of stating the primary error source could

be included. Auxiliary conditions could include local truncation error,

stability of the eigenvalues, the size of the coefficients themselves,

and perhaps even some conditions on the behavior with respect to

random local error (roundoff) . For K = 3 a simple mapping program

was used to "optimize" certain criteria. This is too expensive a process

if reasonable accuracy is required at K = 3 and for any accuracy at K = 5

The iterative, nonlinear optimization algorithms seem to fall

into three classes: (i) require no derivatives , (ii) require the

gradient of the object function, and (iii) require second partials of the

object function. Methods of (i) are slow converging and require as

many function evaluations as (ii) [11] . In our problem we do not have

an explicit expression for the object function much less its derivatives.

Difference quotients have been used in (ii) but would be very inaccurate

in (iii) [7] . The programming of methods (iii) is also complex. The (ii)

methods, then, consist of the linearly convergent steepest descent (in

the negative gradient direction) [1] and the quadratically convergent

conjugate gradient [8] methods.
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Several modifications of the latter are being tried under the program

name OPTIMA. We are trying to reduce the total number of function

evaluations since these will probably involve computation .of eigenvalues

and vectors which is very expensive. For example, to optimize a

K = 5 method using 5 parameters will require a 12 eigenvector

computations per iteration for, perhaps, 200 iterations s 2500

evaluations at about 1 second each at about $. 20 each second f $500;

which does not satisfy budget constraints.

Once this program is working the constraints must be added.

The best way to do this seems to be the penalty function method.

Whenever the minimum search wanders outside the region where

constraints are satisfied a penalty proportional to the size of the

constraint is added to the function we are trying to minimize [6

This tends to keep the search within the constraint boundaries.

The procedure will then be to solve the order equations

parametrically, minimize I A IJ subject to extraneous eigenvalues
1

Ssay 1-0 . We will then work on the more expensive minimize I p iI

procedure which promises greater improvement. If imporvement up to

Cowell is obtained then other optimization criteria can be added. If

no improvement, order will be dropped to Cowell's and the above

repeated. At this point, this work would begin to blend with optimization

of traditional methods [5 so if no improvement is obtained over

the already optimized traditional methods, then this phase of the work

will be terminated.

5. OPTIMIZATION RESULTS

Using OPTK3 several K = 3 order 4 methods were derived

that are both better and worse than Cowell with respect to All ,

SSll and I s1 + s I at various h on y" = y (Table 5). The methods

are not optimal due to the crudeness of the program, however improved

computational accuracy is shown for some of the methods.
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II A II did not vary much over the h interval considered. Also

s1 = 1/d 1 , the larger the better, and I sl+ s2 I should be ,-O(h2)

t he smaller the better. The integrations were done in double precision.

The errors are the last componant at the first and 100th cycles.

Method #7 is Cowell's.

Table 5 Some K = 3, Order 4 Methods

Method IhAll h I sl I  I s1 + s2 error 1 error 100

1 9. 0 0 4. OE-15 5. 6E-26 5E-20 4E-17
E-6 2. 7E-7 1. 7E-12 1E-27 1E-24
E-4 2. 6E-5 2. E-8 1E-25 6. 1E-22

2 9. 0 0 1. 4E-14 9. 2E-28 2E-19 2E-18
E-6 1. 2E-6 1. IE-11 6E-28 3E-25
E-4 8E-26 6. 2E-ZZ

3 4. 8 0 3. E-14 3. E-27 6E-20 1E-17
E-6 6. 8E-7 4. 3E-12 2E-27 ZE-23
E-4 6. 8E-5 4. 3E-8 IE-25 6. IE-22

4 6. 2 0 1. E-14 1. E-28 2E-19 3E-18
E-6 i. 1E-6 8. IE-12 2E-28 2E-25
E-4 1. 1E-4 8. IE-8 9E-26 6. 3E-22

5 6. 7 0 8. E-15 2. E-27 2E-19 2E-17
E-6 1. OE-6 5. 6E-14 2E-28 2E-24
E-4 1. OE-5 5. 6E-10 9E-26 6. 5E-22

6 6. 4 0 1. E-14 2. E-27 2E-19 IE-17
E-6 1. 1E-6 6. 5E-13 7E-28 6E-24
E-4 1. 1E-4 6. 5E-9 9E-26 6. 4E-22

7 7. 0 0 9. 9E-15 1. 6E-28 2E-19 2E-17
E-6 8. ZE-7 8. 2E-13 3E-27 IE-23

Cowell E-4 8. 2E-5 8. 2E-9 8E-26 6. 2E-22
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The spread between s1 values is greatest at h = 10 as is

the spread in computation errors. Methods with larger s1 are better.
-6

For example methods #2, 4 at h = 10 have the largest s. and the
1

smallest errors being a factor of 50 better than Cowell at cycle 100.

Method #1 is an exception having worse s1 and s1 + s2 than Cowell
-6

but smaller error at h = 10 . Methods that are "better" at one h

seem to maintain this at other h also. The computation errors at

h = 10- 2 were all the same perhaps due to dominating truncation errors

or lessening effect of larger sI *

Eigen computations with methods #1, 4, 6, and 7 show

extraneous values remain at 0 and the principal ones = 1 + 3 h as

expected. The componants of the vectors X 1, X 2, -Z1, and Z2 change

as O (h) with h so the analysis of (4. 3. 1) will apply.

These results imply improvement in the condition numbers

can give smaller integration errors.

6. SOFTWARE DESCRIPTIONS

ELLIPSE:

Integrates two body orbits with Class II cyclic or traditional

predictor-corrector methods. The major part of the program is the

same as the GEOSTAR subroutine CSTEP documented in [2] . The

program uses exact starting values and prints the error in each of the

three position components by using fixed point iteration to solve

Kepler's equation. It has been modified to correct more than once.

Computations were in double precision (about 16 places) on the IBM 360

COMPAR:

Integrates y' = c y with Class I cyclic or traditional

correctors and y" = a y for Class II. The starting values are taken

backwards from x = 1. 2 so that methods of all K start integrating at

the same x value allowing direct comparisons in the first cycle.

Starting values and the error at each step are found using the analytic

-17-



m m
solutions. Given the coefficients a. and b. the stability matrix,1 1

A, is formed as in (4. 2. 5) depending on the Class and 0? . It is applied

once each cycle to obtain the solution. It is possible to add a

specified local error, B , in each cycle in addition to the normal
S

roundoff and truncation errors. If h = 0 the process implied by

(4. 2. 6) is undergone where E 0 and Bs can be specified. They

were usually chosen to be (1, -2, 4, -8, 16) E-20 and 0 respectively,

however, at times Bs = E 0. Computations were in single (about 14

places) or double (about 28 places) precision on the KRONOS time

sharing system on the CDC 6400.

EIGENP:

Computes eigenvalues and vectors for each stability matrix,

A, using the QR, double step, inverse iteration algorithm [ Z] . The

Class II matrices at h = 0 were ill-conditioned so the program either

did not work at all or gave poor accuracy. Program HESSEN (QRIEG)

supplied by Mel Velez was used to verify (eigenvalues only) some cases.

A later version of the program, EIGEN, also computes eigenvectors

for A T and the condition numbers. Computations were done in extended

double precision (about 32 places) on the IBM 370 and in double precision

(28) on the KRONOS system. An input parameter specifies the

approximate number of places of desired accuracy before iteration

terminates. We usually got by with 20 decimal places. Computing

time for a 5 x 5 run with EIGEN z 1 sec. z $. 20 on KRONOS.

OPTK 3

Computes A Il , max extraneous root, I s , and

s1 + sZ I for a specified h for y" = 0 y using the parametric order

equation solutions at each grid point of an input specified grid for the

free parameters . The program functions for Class I or II at any K or

-18-



order when the correct order equation solutions are given. Using the

program in a man-machine, time sharing mode the user specifies

the initial grid by typing in the left and right hand endpoints and step-

size for each of the free parameters. After visually inspecting the

output for the "best" region he immediately specifies a finer grid in

this region and repeats, obtaining better methods. EIGEN is called at

each grid point so this program was too expensive at K = 5 costing about

$10 per run for very coarse grids. The KRONOS system was used.

OPTIMA:

Still being developed. Minimizes a nonlinear function of n

variables, f, for which no explicit form is given. In the i th iteration

one must choose a stepsize to approximate the partial derivatives of

f, A x , a downhill direction, D., and a step length in this direction,

z. After considering several algorithms [1, 6, 7, 8, 11] it was

decided to start with the method of steepest descent where D. = - Vf(Xi)

and z was found by minimizing a parabola fit thru X., the directional

derivative in the D. direction ( = slope of parabola), and a second,

arbitrarily chosen point in the D. .direction. Per iteration, this
1

algorithm required only n + 2 f evaluations. Convergence was good

on simple quadratic f for small n but slow for the function with a narrow,

curved, "banana" shaped valley [8]. For f = II A I for K = 5 , n = 10

with no constraints the parabola minimum overshot f min. so often

that X. was changing too radically to converge. The problem here
1

is that I A II is a high degree polynomial in the free parameters, too

steep for a quadratic. Even if we could get down these steep walls we

would be in a narrow, curving valley like the "banana".

The program was modified so that D. = - Vf (Xi) +

Di_1 V f (Xi) I2/ i V f (X.i) 12 called the conjugate gradient

direction [8] . Theory states that if f min lies in a long, .narrow,
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quadratic valley then convergence is assured in r n iterations while

the steepest descent will take many more. For general functions one

must set D. = - V f every n + 1 iterations. This algorithm did converge
1

faster on the banana but still overshot on I AI . Instead of a parabola

fit, Fletcher uses a cubic fit to two points in the D. direction and their
1

directional derivatives. This requires 2 n + 2 f evaluations and

possibly2n+2 more since he sometimes fits another cubic to obtain

a bette'r approximation to f min in the D. direction. Our algorithm is
1

being modified to successively fit parabolas to obtain a better

approximation to f min in the D. direction, We have taken A x = z
1

and this seems to work.

With the latest version of our algorithm after 50 iterations

with 50 (2 x 2) = 200 f evaluations we converge to the same point

on the banana as Fletcher does after 20 iterations with

2 20 (2x2 + 2) - 120 f evaluations. ,IHis actual number of f evaluations

could be as high as Z00 but he does not give this data.

Part of the programming support for ELLIPSE and OPTIMA was

cosponsored by the NASA-PSS contract, part of EIGENP by C. Shipp

for graduate course credit at CSUF, and the remaining by E. Spiehler

under the NASA-CSUF Grant.
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Figure 1.' Cyclic vs. Cowell on an elliptic orbit at h=1 sec. for
400 secs. Roundoff error dominates.
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Figure 2. Cyclic vs. Adams on y' = .5y t. h=10 4 for 2000,cy.cles.
Roundoff error dominates.
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Figure 3. Cyclic vs. Cowell on starting errors only at h=0. Starting
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Figure 4. Cyclic vs. Cowell on y" = y at h=10- 6 . Roundoff error dominates.
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